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Abstract
Results from molecular dynamics simulations of simple, structured particles capable of
self-assembling into polyhedral shells are described. The analysis focuses on the growth
histories of individual shells in the presence of an explicit solvent and the nature of the events
along their growth pathways; the results provide further evidence of the importance of
reversibility in the assembly process. The underlying goal of this approach is the modeling of
virus capsid growth, a phenomenon at the submicroscopic scale that, despite its importance, is
little understood.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The growth of viral capsids—the polyhedral shells of
capsomer particles enclosing the genetic package of spherical
viruses [1, 2]—is one of the more familiar examples of
supramolecular self-assembly. The fact that assembly also
occurs in vitro, in the absence of genetic material [3–5],
simplifies the overall assembly problem and makes it an ideal
candidate for simulation. A further reduction in complexity
arises from the fact that icosahedral symmetry is ubiquitous
among spherical viruses, where capsid shells are formed
from an appropriate number of copies of just one or a small
number of distinct capsomers; this implies that as an initial
approximation, the molecular details of the capsomer proteins
can be expressed in a highly reduced, nonspecific form.
Molecular dynamics (MD) simulation employing simplified
models of this kind ought to be capable of examining the
existence and nature of universal organizational principles
governing capsid self-assembly.

Simulation has an especially important role in the study
of assembly pathways given that nonequilibrium systems are
involved and, as a consequence, very little direct experimental
evidence is available. References [6, 7] describe MD modeling
of capsid self-assembly based on simplified structural models
in which the particle representation retains sufficient detail
to ensure meaningful behavior. The principal characteristics
of the model are (a) an effective molecular shape formed
out of rigidly packed soft spheres that enables particles to fit
together in a closed shell, and (b) multiple interaction sites
located to ensure that the minimal-energy structures, both
intermediate and final, have the desired forms. The pathways
themselves were not considered in the initial work, since the

emphasis was on demonstrating the feasibility of assembly,
and computational limitations required omission of an explicit
solvent.

In a more recent study [8], self-assembly in the presence
of an explicit atomistic solvent was described. Again there
were computational limitations, in this case the limitation
to icosahedral shells constructed from triangular particles,
rather than the previously considered shells of size 60, and
larger, formed from more elaborate trapezoidal particles, but
there is no reason to question the generality of the observed
behavior. The presence of a solvent aids the breakup of
partially assembled shells without subassemblies needing to
collide directly, weakens the ballistic contribution to particle
movement, and serves as a heat bath to absorb energy
released during exothermal bond formation while helping to
ensure conditions closer to thermal equilibrium. The results
described in [8] lead to the conclusion that self-assembly
consists of a cascade of reversible stages, in which low-energy,
maximally bonded intermediate states are strongly preferred, a
process that eventually yields a high proportion of completely
assembled shells. Despite the apparent paradox, the efficiency
of the overall assembly process depends on reversibility, one
of whose contributions is to help avoid the consequences of
trapped states.

There have been other studies that address the dynamics
of capsid assembly. An alternative particle-based, solvent-free
MD simulation involved quasi-rigid bodies formed from hard
spheres [9]. More highly simplified capsomer representations
have been based on spherical particles, instead of extended
capsid shapes, with either directional interactions [10] whose
range exceeds the particle size, or bonding energies determined
by local neighborhood rules [11]; in these simulations the
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Figure 1. Model particle showing the arrangement of spheres that
determines overall shape; small spheres denote locations of
interaction sites.

solvent is represented implicitly by stochastic forces. A
further alternative involves Monte Carlo simulation of patchy
spheres [12], but here the dynamics of assembly are of course
absent. At the other extreme on the complexity scale are the
folded proteins of real capsomers, although MD simulations
employing all-atom models [13] are limited to short trajectories
for testing the stability of prebuilt shells. A variety of
theoretical methods have also been harnessed to study capsid
structure [14–18], while concentration kinetics have been used
for interpreting experiments [4, 19]; discrete particle dynamics
are not involved in such approaches.

The present paper extends the analysis of the simulations
initially described in [8]. An alternative approach to
probing the evolution of partially assembled structures will
be introduced that is able to provide additional details about
events occurring along the assembly pathways. The method is
based on establishing the identity of each partial assembly at
any given stage on the pathway by referring to the complete
shell that eventually forms containing a majority of its current
member particles. This permits monitoring the evolution of
individual clusters of particles as each develops into a closed
shell, allowing for the addition and loss of members along the
pathway.

2. Methodology

The simulations [8] involve particles whose effective shape is
the truncated triangular pyramid, shown in figure 1, designed
to self-assemble into icosahedral shells. The larger, slightly
overlapping spheres that provide the overall shape occupy
multiple planes, while the interaction sites, represented by
small spheres for visual convenience, determine the locations
and orientations of the three lateral faces; these are inclined
at 20.905◦ to the normal. Each lateral face contains four
interaction sites that can bond to matching sites on adjacent
particles; the reason for multiple sites is that they help
maintain correct alignment, a feature that is particularly
important for partial assemblies in which particle attachment
is incomplete. The particle structure and interactions are
based on the model introduced in [7]. This highly simplified
representation can be contrasted with real capsomers [20] that
consist of intricately folded proteins whose exposed surfaces
form relatively complex landscapes.

The same spheres responsible for the shape of the particle
also represent the solvent atoms. All spheres experience
a (short-range) soft-sphere repulsion based on the truncated
Lennard-Jones potential; the parameters of the potential
determine the dimensionless MD length and time units [21]
used in the simulations. The attractive force between bond-
forming interaction sites is derived from the potential

u(r) =
{

e(1/r 2
a + r 2/r 4

h − 2/r 2
h ) r < rh

e(1/r 2
a − 1/r 2) rh � r < ra.

(1)

This interaction is harmonic at distances below rh = 0.3 and
inverse-square above rh, with range ra = 3; its overall strength
is governed by the parameter e that distinguishes the different
runs described below. Particle size exceeds the interaction
range, although less so than in real capsomers; the effect is to
reduce the attraction between wrongly positioned or oriented
particles. Other more general aspects of MD methodology,
including the interaction computations and integration of the
equations of motion, are described in [21].

The system consists of 1875 triangular particles, sufficient
for producing 93 full shells; there are a total of 125 000
molecules, the majority (98.5%) of which are solvent atoms.
The system is confined to a cubic region with periodic
boundaries; the region size is chosen to yield a mean number
density of 0.2. Even though the particle concentration is much
higher than in experiment, the solvent presence is adequate
to ensure that diffusion minimizes the effects of the ballistic
particle motion that would otherwise occur. The run length is
60 × 106 time steps, adequate for ensuring that essentially all
growth has ceased; 200 steps correspond to one unit of (MD)
time. The particle mass is set at 21 times that of the solvent
atom (with unit mass); having a much smaller mass ratio than
in reality shortens the assembly timescale, making it accessible
to MD, but without altering the behavior in any qualitatively
significant manner.

Bond formation is exothermal and leads to a gradual
warming of the system; this is suppressed by means of a
thermostat that maintains a temperature corresponding to unit
mean (translational and rotational) kinetic energy per particle.
In the initial state, particles and solvent atoms are positioned
on a lattice with random velocities; to avoid possible overlap
at the start, particles begin collapsed (with all their component
spheres fully overlapped) and expand to their final shape over
the initial 5000 steps. None of the additional mechanisms that
were introduced to regulate or assist assembly (e.g., damping,
or the breakup of partial assemblies) described in [7] are
necessary for the present simulations.

Establishing membership of partial assemblies and
algorithmically verifying that shells are correctly assembled
requires the capability for identifying bound clusters [21] and
checking the connectivity of their bond networks. Cluster
membership is a key part of the analysis and, in the present
study, interaction sites are regarded as bonded when less than
0.6 (=2rh) apart; this threshold is empirically chosen to avoid
transient apparent bond breakage caused by thermal vibration.
The particles themselves are considered bonded if all four site
pairs on the adjoining faces are bonded; this state implies
almost complete particle alignment, with only the smallest of
fluctuations in relative position and orientation.
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Figure 2. Cluster size distributions (including monomers) as functions of time (MD units) for different attraction strengths e; the distributions
are expressed as mass fractions.

Table 1. Final cluster distributions for different interaction strengths
e; mass fractions of monomers, clusters grouped by size range, and
complete shells are listed, with the maximum mass fraction for each
run shown in bold.

Cluster mass fraction

e Size: 1 2–5 6–10 11–15 16–19 20

0.11 0.7931 0.0976 0.0181 0.0080 0.0085 0.0747
0.115 0.5153 0.0704 0.0053 0.0256 0.0101 0.3733
0.12 0.3040 0.0314 0.0032 0.0000 0.0000 0.6614
0.125 0.1915 0.0283 0.0032 0.0203 0.0101 0.7466
0.13 0.0709 0.0182 0.0032 0.0224 0.0000 0.8853
0.14 0.0011 0.0000 0.0310 0.1104 0.2282 0.6293
0.15 0.0000 0.0000 0.0192 0.3158 0.4623 0.2027

3. Results

The analysis begins with a comparison of the different growth
scenarios observed as the interaction strength parameter e is
varied; if the range of variation is not too large this is equivalent
to examining the temperature dependence of the behavior. A
more detailed discussion of shell growth for the maximal yield
case then follows.

Table 1 summarizes the outcome of a series of simulation
runs for various values of e; the results are expressed as the
mass fraction contained in clusters of different sizes and the
residual particles present as monomers. Essentially no change
in cluster population occurs towards the end of the runs. At
low e very little growth occurs due to minimal initiation, but
as e is increased the balance shifts towards higher yields of
complete shells. The maximum yield of 83 shells (out of
a possible 93) is achieved at e = 0.13. The yield then
falls, since the ability to reach completion is inhibited by
excessive early growth, resulting in too many monomers being
incorporated into clusters prematurely. Repetition of one of
the runs with a different initial state confirmed that, allowing
for reasonable fluctuations, the results are reproducible. No
oversized (mutant) clusters appeared in these runs, although
these would be expected for sufficiently large e.

The time development of the cluster size distributions, also
expressed in terms of mass fractions, is shown in figure 2. This
is a subset of the results shown in [8], but the plots are shown

Figure 3. Image of the e = 0.13 system at the end of the run; the
relatively few particles not in complete shells are shown
semi-transparently and the solvent is omitted (visual artifacts due to
periodic boundaries are mentioned in the text).

from a different perspective to allow the early and intermediate
growth features, especially the limited population of small
clusters, to be seen more clearly. Figure 3 shows an image
of the e = 0.13 system once all 83 complete icosahedral shells
have formed, with other partial structures shown ghosted. Note
that periodic boundaries are applied at the level of individual
particles, so that shells that cross the container boundaries
appear fragmented; while the solvent particles are not shown
here (for clarity, unlike [8]) they actually fill the volume. As
described in [8], closed shells are especially stable, so that even
if e is subsequently reduced to a value too low for assembly
initiation, the shells do not self-destruct, implying hysteresis.

The earlier analysis of shell growth [8] dealt with the
accumulated lifetimes of particle clusters of different sizes and
the probabilities of events corresponding to size increases and
decreases, with the latter tending to dominate. In addition,
the energetics of intermediate structures were considered,
and a strong preference for maximally bonded (low-energy)
configurations was observed. The focus was on the mean
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Figure 4. Individual size histories for 30 out of the 83 shells.

cluster properties as a function of size, while the assembly
history of individual shells was not considered; the following
discussion addresses this topic.

The examination of the growth history of individual shells
begins by considering the shell membership of the final state
of the run. On the basis of this information, as indicated above,
it is possible to associate partial assemblies at earlier stages
of the run with particular final shells, based on the majority
membership of their particles. In general, this accommodates
particles both entering and departing the growing cluster.
There can be some identity ambiguity, however, for small
clusters, where a given final shell can own the majority of
particles from more than one such cluster, or the identity of the
cluster with the most particles destined for a given shell can
change. Such effects will have only minimal influence on the
ability to monitor individual cluster histories once a relatively
stable core (e.g., a pentagon) has formed, and they become
even less of a concern as growth progresses further.

The analysis of the properties of a given cluster considers
all its member particles, including those that subsequently
detach and do not belong to the majority. Cluster membership
is determined from configurations recorded every 2000 time
steps (10 MD time units); the limited time resolution can
merge or conceal multiple closely spaced events, but in view of
the relatively slow particle motion, the majority of individual
growth steps can be distinguished. The analysis is based on
the high-yield e = 0.13 system; in addition to the 83 complete
shells, there are 11 incomplete and small clusters that are not
considered.

The growth histories of a subset (for clarity) of 30 out
of the total of 83 shells are shown in figure 4. Initial growth
to pentamer size, of which 95% are regular pentagons [8],
occurs rapidly, but the distribution of subsequent growth rates
is broad. While some clusters grow rapidly—some even
monotonically—to completion, the paths of others appear to
become blocked at certain sizes, repeatedly adding and then
promptly losing an additional particle until, eventually, a more
lasting growth step is achieved. Size increases greater than
unity are apparent. Analysis in greater detail, preferably aided
by direct visualization, would be needed to determine if there
is any clear distinction, e.g., in terms of detailed morphology,
between clusters experiencing fast and slow growth rates, or
whether the growth histories are dominated by fluctuations.

Figure 5. Fraction of size-change events occurring for clusters of
each size; size-decrease events are shown with negative values for
emphasis.

Figure 6. Measurements of mean cluster lifetimes (see the text for an
explanation of quantities).

Figure 5 shows the fractions of events corresponding to
unit size changes in each direction, together with the fractions
of all size-changing events irrespective of magnitude, each as a
function of cluster size; negative values are used to distinguish
the size-decrease events, so it is the distances from the zero
line that must be compared. For most cluster sizes, unit size
changes account for the majority of events. The important role
of reversibility is clear from these measurements, as already
noted in [8], namely that a substantial fraction of events at all
sizes (except 5 and 19) involve size decreases, and that there
are cluster sizes (e.g., 7, 9, 13, 16) for which the size is more
likely to decrease than increase.

Additional details emerge from considering the detailed
breakdown of size changes (not shown). From the particular
run under examination it is apparent, for example, that the
probability of a given size change does not vary monotonically
with the magnitude of the change, and changes of size ±5
have an increased likelihood: for clusters of size 10, 27% of
the events are reductions of −1, 5% −2, 0.4% each −3 and
−4, and 4% −5, whereas for size 12, 60% of the events are
increases of +1, 4% +2, 1% +3, 0% +4, and 2% +5.

Measurements of cluster lifetime appear in figure 6. Four
different quantities are shown. The accumulated time is
the mean total time that clusters exist at a given size (the
lifetime distributions themselves are broad). The values can
be correlated with the preferred direction of change, and those
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Figure 7. Scatter plot showing the time to reach size 10, and then
size 20, for each shell.

sizes where increases are more likely to occur than decreases
(notably 5, 8, 10, 12, 15, and 19) also have large accumulated
times. As a consequence of the strongly reversible nature of
cluster growth, the time spent at a particular size is likely to be
made up of several distinct intervals. Thus the second quantity
shown, referred to as up/down, is the mean uninterrupted
time spent at a given size, a value that in most cases is
substantially less than the accumulated time; the ratio of these
times provides an estimate of the number of visits to the
corresponding size, and the value ranges from a low of almost
unity at size 19, up to about 15 at size 5. The remaining
quantities are breakdowns of the uninterrupted time according
to the direction of the next size change; in those cases where
a clear difference exists, it is apparent that the time to wait
for a size decrease can be considerably less than for a size
increase. These results provide additional evidence of the way
reversibility dominates the overall growth process.

A further characteristic of the growth history is the
influence of the rate of early growth on the speed of subsequent
development. The scatter plot shown in figure 7 provides a

simple way to examine this effect. Each data point corresponds
to a shell, where the coordinates denote the elapsed time
to reach size 10 and the time from size 10 to completion.
For those clusters lying above the diagonal the latter time is
longer, in some cases by a substantial amount, but for a small
proportion of shells it is the first half of the growth process that
is the more time consuming.

Imagery is especially helpful for exploring those aspects
of the growth process that are less readily quantifiable, and
offers the possibility of suggesting additional approaches to
analyzing the pathway details. Figure 8 shows a series of
images covering several stages in the growth of just one of
the shells. Only the particles directly involved are included
(although some may be too far away to appear in the frames
shown). Color coding identifies the eventual disposition of
the particles; yellow for particles destined for (or already in)
the final shell, gray for particles only temporarily attached to
the growing shell, and green for particles that are temporarily
attached to yellow particles not yet in the final shell. The
particular growth sequence shown here turns out to be an
atypical one, based on an analysis of event types, since it
includes the joining of two clusters both of which are at least
of pentamer size. A pentagon is seen in frame #2, two larger
complexes in frame #3 and a cluster merging event in #4, the
shell nearing completion in #7, and the final complete shell
in #8.

4. Conclusion

The present paper continues the study of the dynamics of
simplified viral capsomer models in an explicit atomistic
solvent, the eventual goal of which is the modeling of
capsid self-assembly. The current focus is on measurements
related to the growth histories of individual polyhedral shells.
This form of analysis provides an alternative perspective,
as well as support for the earlier results that revealed the
importance of reversibility. As the results clearly show,
microscopic self-assembly, where the dynamics reflect the
intrinsic thermal fluctuations prevalent at such scales, is an

Figure 8. Images showing the growth of one of the shells; only the particles directly involved are included although some lie outside the field
of view (solvent is also omitted); the color coding is explained in the text.
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entirely different class of phenomenon from corresponding
processes at macroscopic scales where reversibility is not a
consideration.
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